Approximate ILP Rules by Backpropagation Neural Network: A Result on Thai Character Recognition

نویسندگان

  • Boonserm Kijsirikul
  • Sukree Sinthupinyo
چکیده

This paper presents an application of Inductive Logic Programming (ILP) and Backpropagation Neural Network (BNN) to the problem of Thai character recognition. In such a learning problem, there exist several different classes of examples; there are 77 different Thai characters. Using examples constructed from character images, ILP learns 77 rules each of which defines each character. However, some unseen character images, especially the noisy images, may not exactly match any learned rule, i.e., they may not be covered by any rule. Therefore, a method for approximating the rule that best matches the unseen data is needed. Here we employ BNN for finding such rules. Experimental results on noisy data show that the accuracy of rules learned by ILP without the help of BNN is comparable to other methods. Furthermore, combining BNN with ILP yields the significant improvement and surpasses the other methods tested in our experiment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fuzzy Logic and Genetic Algorithm for Optimizing the Approximate Match of Rules based on Backpropagation Neural Networks

This paper presents an application of Fuzzy Logic(FL) and Genetic Algorithm(GA) for improving the approximate match of first-order Inductive Logic Programming(ILP) rules that is based on Backpropagation Neural Networks(BNN). With the help of FL, the evaluation of the truth values of logic programs is more problem-sophisticated, before these values are sent to the BNN for learning or for recogni...

متن کامل

Handwritten English Character Recognition Using Neural Network

In this paper, work has been performed to recognize Handwritten English Character using a multilayer perceptron with one hidden layer. The feature extracted from the handwritten character is Boundary tracing along with Fourier Descriptor. Character is identified by analyzing its shape and comparing its features that distinguishes each character. Also an analysis was carried out to determine the...

متن کامل

Comparison of Image Analysis for Thai Handwritten Character Recognition

This paper is proposing tlie method for Thai handwritten character recognition. The methods are Robust C-Prototype and Bacl-c-Propagation Neural Network. The objective of experimental is recognition on Thai handwritten character. This is the result of both methods to be appearing accuracy more than 85%.

متن کامل

Abstract-Neural Networks are being used for character recognition from last many years but most of the work was confined to English character recognition

Neural Networks are being used for character recognition from last many years but most of the work was confined to English character recognition. Till date, a very little work has been reported for Handwritten Farsi Character recognition. In this paper, we have made an attempt to recognize handwritten Farsi characters by using a multilayer perceptron with one hidden layer. The error backpropaga...

متن کامل

A comparison of Thai speech recognition systems using hidden Markov model, neural network, and fuzzy-neural network

The recognition of ten Thai isolated numerals from zero to nine and 60 Thai polysyllabic words are compared between different recognition techniques, namely, Neural Network, Modified Rackpropagation Neural Network. Fuzzy-Neural Network, and Hidden Markov Model. The I j-state left-to-right discrete hidden markov model in cooperation with the vector quantization technique has been studied and com...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999